Sustainable strawberry production

Steve Fennimore

University of California-Davis, Salinas, CA
Sustainable strawberry production

- Future of fumigation
- Define sustainable strawberry production
- Substrate production
- Soil disinfestation
- Improved soil management
- Summary
- Sustainability in the sense of IPM
Fumigation

- Fumigants are likely to be more restricted in the future. This is not a new trend.
 - Regulations requiring less and less emissions, larger buffer zones, more sensitive sites, lower rate caps, worker safety regulations, VOCs and more …
 - Neighborhood and activist lawsuits against fumigation.
- Strawberry production systems that do not use fumigants are needed.
Sustainability

- “Farming systems that are capable of maintaining their productivity and usefulness to society indefinitely.” Mary Gold, Alternative Farming Systems Information Center.
- Methyl bromide fumigation as practiced in the past is no longer a long-term sustainable practice.
- We simply cannot drop fumigants and go 100% organic as some have suggested, as that is not sustainable either.
What are sustainable strawberry systems?

Sustainable strawberry systems:
- Allow the grower to remain profitable
- Are reliable and consistent
- Do not produce excessive nutrient runoff, emit pollutants or cause soil erosion or soil degradation
- Produce a healthful quality fruit that the consumer wants
- Are compatible with the current land tenancy
Potential sustainable strawberry production systems

- Strawberry production in substrates
- Healthy soils
 - Soil amendments such as mustard seed meal
 - Management of soil microbial communities
- Soil disinfestation without fumigants
 - Anaerobic soil disinfestation (ASD)
 - Steam, heat
- Other ideas?
2009-10 RaBeTS trial

- Amended soil 50% + rice hulls 25% + coir 25%
- Peat 70% + Pearlite 30%
- Coir 100%
- Peat 50% + Coir 25% + Rice hulls 25%
- Standard Bed fumigated with MBPic or Pic
- All substrates had low, medium and high starter fertilizer
May 24, 2010 MBA nitrate status - medium preplant fertilizer

![Bar graph showing nitrate levels in different materials]

- Coir: 0.8 g/Kg
- Peat Pearlite: 2.3 g/Kg
- Peat Coir Rice: 1.9 g/Kg
- Amend steam: 0.1 g/Kg
- Amend NF: 0.1 g/Kg
- Amend Fume: 0.1 g/Kg
Fruit yield MBA

- Amend fume: 48.8 kg/plot
- Amend steam: 47.6 kg/plot
- Amend NF: 42.3 kg/plot
- Peat pearl: 40.1 kg/plot
- Peat coir rice: 36.7 kg/plot
- Std bed: 42.5 kg/plot
Summary - substrates

- Peat, coir and peat/coir/rice all appeared to retain NO$_3$ similarly.
- Acceptable strawberry yields can be produced on substrates and amended soils.
- It is probably time to develop a budget so that the costs can be evaluated.
- We also need to look at the mobility of this system given that much of the land is leased.
Healthy soils

- The objective is to cultivate soils in a healthy soil environment.
- In practice this would mean management of the field in such a way that minimizes pathogen infestation and increases beneficial organisms.
- Includes soil amendments, microbial inoculants and others....
Strawberry fruit yield response to mustard seed meal

Salinas 2009-10
Mustard meal results

- Weed control with mustard meal was poor.
- Suppression of Pythium with mustard meal was not consistent.
- Yield responded to mustard meal rate at Spence, but not MBA.
Soil disinfestation without fumigants
Soil disinfestation

- Control or suppression of pathogens and weeds in the soil.
- Fumigants have been used for this purpose for decades.
- Non fumigant methods of soil disinfestation:
 - Anaerobic soil disinfestation
 - Steam
 - Heat
Anaerobic Soil Disinfestation (ASD)

- ASD was developed in the Netherlands and Japan as an alternative to MB fumigation.
- ASD requires an organic carbon source, covering & irrigating to saturate the soil to create conditions for anaerobic decomposition of the organic carbon.
- The byproducts of anaerobic decomposition have proved toxic to many fungal pathogens and nematodes.

Shennan and Murimoto
Steam applied to heat soil to >158°F for 20 minutes will kill most pathogens, nematodes and weed seed.

K.F. Baker, 1957
Strawberry yield at Salinas 2008-09

Steam works

LSD = 0.05
Steam application to moving soil
Steaming soil: moving vs. stationary

Moving soil

Stationary soil

Time min 0 4

Time min 0 5 10 20.
Current efforts

- We are currently designing a mobile propane-fired steam applicator.
- Steam will be mechanically mixed with the soil.
- Our goal is to treat at least 1 acre per day.
Assumptions

- Fumigants will remain the most cost-effective means for soil disinfection where they can be used in strawberry fields.
- The percentage of acres that can be fumigated will decline due to regulatory restrictions.
- The need to produce strawberry without fumigants will increase.
- Many different tools are needed to produce strawberry without fumigants.
Areas that can not be fumigated

1. Organic-compliant production fields
2. Areas in fumigant buffer zones
3. Areas where the fumigant needs exceed the township cap limits
A field impacted by sensitive sites
Conclusion/ Ideas

- Substrate production will work, but is it economical and portable on leased ground?
- Is it possible to develop a better soil health management system to clean up an infested field?
- How effective is ASD over large areas? Will water consumption and hills limit the adoption of this method?
- Can a steam generator be developed that is fuel efficient and can treat large areas?
- Can several of these treatments be integrated into one system?
The basics of pest management

- **Field Selection**
 - Field history

- **Prevention**
 - Prevent pathogens and weed seed from entering the field
 - Substrate production

- **Control**
 - ASD
 - Steam